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Abstract- In Part I of this article (1995, Int. 1. Solids Structures 32, 1907 1925) a simplificd thcory
for the incremental state of stress in an orthotropic circular memhrane tube wa, prcscl1Icd. In this
second part, a numerical method is devised to solve the resulting elliptic sixth-order system of
equations, for tubes which contain no slits or holes. In this method. Fourier decomposition is used
in the circumferential direction and finite element discretization is used in the longitudinal direction.
Special finite elements with six degrees-of-freedom are employed. Using this numerical method, the
solutions of several specific problems of membrane tuhes are obtained. presclltcd and discussed.
These include two problems concerning the decay of boundary disturhances. The theoretical treat
ment of such decay is also discussed.

I. INTRODUCTION

In the first part of this article (Libai and Givoli, 1994), we presented an incremental
linearized theory for the state of stress in an orthotropic circular membrane tube. The tube
is initially subjected to uniform internal pressure Po (per unit deformed area) and to a
pulling force T, which result in a known homogeneous state of stresses accompanied by
large homogeneous deformation. The length, thickness and radius of the tube in this
homogeneous state are denoted L, hand R [see Fig. I of Libai and Givoli (1994)]. At this
stage, some changes in the conditions of the tube are considered. These changes may be in
the form of additional nonuniform applied loads or of a local change in the geometry. e.g.
a small slit (crack) is introduced or the shape of the boundary is slightly changed. We seek
the final inhomogeneous deformation and state of stress in the tube. The problem is stated
in full detail in Section 4 of Libai and Givoli (1994).

In Libai and Givoli (1994), we derived several versions of the governing equations,
with different levels of simplification. One simplified version consists of the elliptic sixth
order linear set of equations (59) and (60) of Libai and Givoli (1994), which are expressed
in terms of the stress function ¢ and the curvature function l/;. We repeat these equations
here:

RV~¢+t/Jn = o.

(I)

(2)

Here x E [0, L] and S E [0, 2nR] are distances along the generators and parallel circles or the
tube, respectively. Also, a comma indicates partial differentiation, P, = T/(2nR). P, = PoR
and p (x, s) is the additional (incremental) applied pressure load. The operator V: in eqn
(2) is the "modified" biharmonic operator, defined by

(3)
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Hcrc fir. Ii. and l' ;.11\.' constants which depend on the material orthotropic compliances [ey,
c. C", ('" and (/ in Libai and Givoli (1994)), as well as on the background loads P, and P"
These constants a re defined in eqns (40)-(44) and (49) of Libai and Givoli (1994). In the
case wherc the material properties are isotropic, V: in eqn (2) reduces to (1/Eh)V 4

, where E
is Young's modulus, and '114 is the proper biharmonic operator.

The assumptions that lead to the simplified equations (I) and (2) can be summarized
as follows:

(a) The increments from the homogeneous (reference) state to the final state are
sufficiently small to justify the complete linearization of the equations in these
increments.

(b) The conditions associated with Donnell's approximation hold. These conditions
are expressed in cqns (55) and (56) of Libai and Givoli (1994) ; they state that the
products of the stress resultants in the homogeneous state by the strain components
are much smaller than the incremental stress resultants, and that the same is true
for the curvatures. (The effective properties of the highest order terms must,
however. be retained.)

In spite of these approximations, the rcsulting linear equations (1) and (2) include the
essential "nonlinear eflects" of membrane behavior [see discussion in Section 7 of Libai
and Givoli (1994)].

The incremental stress resultants are denoted N" N, and N" where the first two are
normal stresses and the third is a shear stress. The incremental curvatures are denoted K"

K, and "~'I' wherc the first two are normal curvatures and the third is the twist. These stress
resultants and curvatures are related to cjJ and IjJ via [cf. eqns (57) and (58) of Libai and
Givoli (]1l94)]

(4)

(5)

The incremental constitutive relations (35)-(37) of Libai and Givoli (1994) are assumed to
hold. In Section 8 of Libai and Givoli (1994), we also argue that if the incremental rotations
are small then, under the assumptions (a) and (b) above, IjJ is identical to the normal
displacement \1'. ]n addition, we proposed the boundary conditions of diaphragm (simple)
support,

4) = 0; q)" = 0 ; IjJ = 0, (6)

as appropriate conditions on the two edges of the tube x = 0 and x = L [cf. eqn (65) of
Libai and Givoli (] 994)]. We recall that the total incremental load acting on the tube is
assumed to be self-equilibrated,

In this second part of the article, we shall restrict ourselves to circumferentially "com
plete" tubes, namely tubes which contain no slits or holes. This restriction is necessary in
order that the numerical method proposed here can be applied. The numerical solution of
membrane tube problems which involve slits requires additional consideration, for two
reasons. First, it necessitates the use of "heavier" numerical tools, such as finite elements
with many degrecs-of-freedom [see Section 10 of Libai and Givoli (1994)]. Second, one has
to specially deal with the singularity at the tip of the slit. As a consequence, the required
computational elTort is ,'.Iso much larger than when no slits are present. Also, boundary
conditions along the general,)r boundaries have to be included.

The followii1,': j, the outline 01' this paper. In Section 2 we apply the Fourier decompo
sition in the 1:1rC1ll1lI'erenll,1! dii'l'Ction to eqns (I) and (2). This results in an infinite system
of unclHlpkd "lllmhl" ordllJdry differential equations. ]n Section 3 we replace each of the
modal prohknl" h ~lll eljUildlcnt variational problem. ]n Section 4 we present a finite
element forlllulallnl1 for the solution of the variational modal problems. Special finite
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elements with six degrees-of-freedom are used in the longitudinal direction of the tube, and
their associated matrices are derived explicitly.

The combined finite element-Fourier decomposition method proposed in this paper is
less general than some other methods, such as the standard finite element method, in that
it can be applied to a more restricted class of problems. In particular, we cannot analyse
membranes with slits or holes by using this method. However, for the class of problems
considered here (namely problems which involve complete membrane tubes), it is sig
nificantly more efficient.

In Section 5 we discuss the calculation of stresses and curvatures, which is performed
as a post-process based on the finite element solution. In Section 6 we summarize the
numerical procedure and discuss some computational aspects. In Section 7, we use the
numerical method to obtain the solutions of several specific problems of membrane tubes.
These include two problems concerning the decay of boundary disturbances. The theoretical
treatment of such decay is discussed in Appendix A. We close with concluding remarks in
Section 8.

2. MODAL EQUATIO"JS

The first stage in the proposed numerical method is to use the periodicity of the
solution in s, and to decompose eqns (I) and (2) in the circUlI1j(>rclltia! dircctioll into discrete
Fourier modes. To this end, we expand ¢ and ljJ in Fourier series of the form:

f. [ ns IIsl¢(x,s) = I' ¢~(x)cos-+q)~(x)sin- ,
"~O R R

J. [ ns liS]
ljJ(x, .1') = I' ljJ~(x) cos - + tV, (x) sin - .

"~O R R
(7)

The prime after the sum indicates a factor of 1/2 which multiplies the cosine term with
n = O. We also decompose p(x, s) in the right side of eqn (I) into its circumferential Fourier
modes:

'[ liS IIslp(x, .1') = I' p~(x)cos- + p~(x) sin-
R

.
n ~ 0 R

Here p~(x) and p~(x) are the known Fourier coefficients of p (x, s), obtained by

1 ihR
11.1' I i.2n

" liSp~(x)=- p(x,s)cos-ds, p;,(x)= .. p("S) sin ds.
nR 0 R nR ,I' R

(8)

(9)

Now we substitute the expansions (7) and (8) into eqns (I) and (2). ,md n':ljuirc that the
coefficients of cos (ns/ R) and those of sin (ns/ R) be balanced on bOlh sides ol"the eq ua tlons.
After some algebra we obtain

(10)

( II)

Here a prime indicates differentiation with respect to x. In eqns (10) and (II) we have
omitted the superscripts c and s, since these equations hold equally well for the cosine
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coefficients (V, and V/~, as for the sine coefficients ¢~, and t/J~. From the boundary conditions
(6) we deduce the boundary conditions for the Fourier coefficients at the two edges:

4)" = 0: q);; = 0; t/Jn = 0 at x = 0, L. (12)

Thus, wc have replaced the original problem (I), (2) and (6) by an infinite sequence of
decoupled modal problems, eqns (10)-(12), for n = 0, 1,2, ... , which are defined on the
one-dimensional interval [0. L].

3. VARIATIONAL MODAL PROBLEM

Now we present a variational formulation for the modal problem (10)-(12). Note that
the harmonic number n is considered here to be fixed.

First, we define the two spaces,

c/' = :T Iq)EH 2 [O,L] , ¢ = 0 at x = O,L} (13)

(14)

Here li" is the nth-order Sobolev space. Next, we define the following symmetric and
bilinear forms:

n
0(([>,4)) = J (¢"fJ,R4¢"+¢'pn2R2¢'+¢fJxn4¢)dx

o

~I

C(l~,l/I) = -J (i[J'R 4P"t/J'+i[JR 2 n2 P,t/J)dx,
o

and the linear form.

Then the weak form of the problem (10)-( 12) is:

find (P" E I 'c' and 1/1" E 'f such that for all (fJ Er(p and for all i[J E i"~oj;,

O(¢,T,,)+h(¢,t/Jn) = 0

b(i/J, Tn) +c(i/J, t/Jn) = q(i/J).

(15)

(16)

(17)

(18)

(19)

(20)

It can bc proved that this weak form of the problem is equivalent to the strong form
consistingofeqns (10) (12).

It is also possible to recast the problem as a variational principle. To this end, we
deflne the functional '1. whose domain is'!';j, xr" :

'fJ[(P.I/J] = ~o(¢.¢)+~c(t/J,t/J)+b(¢,t/J)-q(t/J). (21 )

Then we seek the pair ((/)". tfin) which makes '!J stationary. It is easy to see that by requiring
that the Jlrst variations of'!} with respect to ¢ and to t/J vanish, one obtains the two equations
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(19) and (20). Thus, the stationary point (¢n, t/Jn) of-;§ is also the solution to eqns (10)-(12).
This stationary point is unique and is a saddle point (Sewell, 1987).

This variational formulation is analogous to the one presented in Section 9.1 of Libai
and Givoli (1994) for the full two-dimensional problem. For other types of boundary
conditions and reference states, the more general functional II*, introduced in Section 9.2
of Libai and Givoli (1994), can be exploited.

4. FINITE ELEMENT FORMULAnON

Now we use the weak form of the modal problem, (19) and (20), as the starting point
for a Galerkin finite element scheme. This scheme has the standard form of a mixed-type
finite element formulation which is often used in other contexts (Malkus and Hughes, 1978 ;
Kikuchi, 1987; Stenberg, 1988; Roberts and Thomas, 1991). Note that the finite element
method is applied to each modal problem separately, and thus is associated with the
longitudinal discretization of the tube. On the other hand, in the circumferential direction
the discretization is spectral, as described in Section 2.

The combination of finite elements in one spatial direction and discrete Fourier
decomposition in another spatial direction is a known technique, and has been employed
previously in various studies [see e.g. Rand and Givoli (1992), Givoli and Rand (1993),
Bathe and Almeida (1980), Wunderlich et at. (1985), Danielson and Tielking (1993), Kaiser
et al. (1993), and Akhras et al. (1993)]. The "finite strip" approach is one example of such
a technique. Here we shall apply a combined finite element-Fourier decomposition method
to the membrane problem under consideration. This will lead to a nonstandard but very
efficient numerical scheme.

In the Galerkin finite element method, we replace the spaces "1/1, and "F"ljI by finite
dimensional subspacesf/':~ and i/;~. The functions q/' Ei/~ and t/Jh E 'rJ are assumed to
have the form:

¢h(X) = IN~I)(X)¢A+IN~2)(X)xA
A A

t/Jh(~y) = IMA(x)t/JA'
A

(22)

(23)

Here the index A corresponds to a node number in the finite element mesh, N~I), N~2) and
M Aare shape functions associated with node A, and ¢ A, XA and t/J Aare the nodal values of
1/', ¢h' and t/Jh, respectively. Note that the special structure of eqn (22) is needed due to the
regularity condition ¢ E H 2 in eqn (13), which leads to the requirement that both ¢h and ¢h'
be continuous in [0, L]. Thus, the shape functions N~l) and N~2) in eqn (22) must be
continuously differentiable in [0, L]. On the other hand, the lower-order regularity condition
t/J E HI in eqn (14) allows the use of shape functions MAin eqn (23) which are continuous
but only piecewise-differentiable. For a discussion on the regularity requirements of finite
element shape functions, see e.g. Hughes (1987).

The finite element solution-pair of the modal problem (19) and (20), ¢~ and t/J~, as well
as the weighting functions ¢ and l/J, are expanded as in eqns (22) and (23). Then the
resulting expressions are substituted into eqns (19) and (20), and the linearity of the forms
(15)-(18) as well as the arbitrariness of the coefficients in the expansions of ¢ and l/J is
exploited. This results in the global finite element system of equations:

(24)

where K n is the "stiffness matrix," Fn is the "load vector" and dn is the solution vector,
whose entries are the unknown nodal values ¢ A, XA and t/JA, alternately.

As usual in finite element formulations, it is convenient to describe all the quantities
and do all the calculations on the element level. Thus, we shall obtain explicit expressions
for the element stiffness matrix kC and the element load vector F. Here we omit the index n
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Ie

element e
~I

+ +
node node
~1 ~2

d.Q.L d.Q.L
i=l: <l>~ i=l: <l>~

i=2: X~ i=2: X~

~: ~ ~: ~

Fig. I. The finite element used in the solution of the modal problem. Three degrees-of-freedom are
associated with each node, i.e. the nodal values of <P, <P" and Ij; (denoted <PO' Xu and !/Jul·

corresponding to the mode number, for clarity. The global matrix Kn and global vector Fn

are obtained from the element matrices ke and the element load vectors re
, respectively, by

applying the standard assembly operator. For future reference, we define the forms a (-, 'Y,
b (-, .y, c (-, f and q C-)" exactly as in eqns (15)-(18), but with the integration performed
only over the domain of element e.

A single element is shown in Fig. 1. It has two nodes, and three degrees of freedom at
each node: the nodal values of ¢~, ¢~/ and t/J~. Inside each element, the functions ¢;: and
t/J~ are interpolated, analogously to eqns (22) and (23), via

, 2

¢;;(X) = I N;,l)(X)¢na+ I N~2)(X)Xn", XE1'2"
a = 1 (1 = 1

t/J;;(X) = I Ma(x)t/Jn,, ' XEf:!".
(/=1

(25)

(26)

Here 1'2" is the element domain, and the index a corresponds to an element node number
(a = 1,2). The shape functions N~lJ,N;/2) and M" are the element counterparts of the
"global" shape functions N~l), N~2) and M A' We choose M" to be the standard linear shape
functions, and N;/) and N;,2) to be the Hermite cubic shape functions, which are often used
in Bernoulli~Euler beam bending problems (Hughes, 1987).

The element stiffness matrix kl' is a 6 x 6 matrix, whose entries may be written as 10.1'
However, it is more convenient to write the entries of ke as k~ihj, using four indices. Here a

and b correspond to node numbers and range from 1 to 2, and i and} correspond to degree
of-freedom numbers and range from I to 3 (see Fig. I). The relations 1= 3(a-I)+i and
J = 3(b-l) +} hold, and thus, for example, k~3 == kb3' Using this description, it is easy
to obtain

eN'" N"'r
i= 1,2, } = 1,2a ,~h ,

b(N~), M/,)" : i= 1,2, j=3
k~ihl =

b(l\.(" Nh/ J
)" : i = 3, } = 1,2

(27)

c(Ma, M h )'; i = 3, }=3

To obtain k" in explicit form, we now substitute the well known expressions for the
linear shape functions M" and the Hermite cubics N~) (Hughes, 1987) into eqn (27), use
the definitions (15)-( 17), and perform the resulting integrations exactly. After some algebra,
we finally get
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12 6h 0 -12 6h 0
36 3h 0 -36 3h 0

4h 2 0 -6h 2h 2 0 4h 2 0 -3h _h 2 0
fJ R 4 0 0 0 a pn

2 R 2 0 a 0 ak e =_s_ +-- 36 -3h 0(1")3 12 -6h a 3ar
4h 2 0 4h 2 a

a
a

156 22h a 54 -13h a
4h 2 -3h 2

a a 0 a a a
a l3h 0 a a a a a

fJx n4 1" a a a a R 4 P, 1 a a -1
+ 420 156 -22h a I" a 0 a

4h 2 a a a
1

a

0 a 0 a a a
a a -1 a a 1

a a 0 a a a a a a a
R 2

n
2 PsI" 2 a a 1 R3 a 1 0 a
6 0

+- a 0 -1
(28)

a a r
0 a a a

0
2

Here I" is the length of the element (see Fig. 1). All the matrices that appear in eqn (28) are
symmetric, and so only their upper half is indicated. We note that most of these matrices
are proportional to the well-known finite element matrices used in linear one-dimensional
rod and beam analysis (Hughes, 1987; Cook et al., 1989). More specifically, the nonzero
blocks of the first five matrices on the right hand side of eqn (28) are proportional, by
order, to the stiffness matrix of a Bernoulli-Euler beam element, the geometric stiffness
matrix of a beam element (used, for example, in buckling analysis), the mass matrix of a
beam element, the stiffness matrix of a tension-compression rod element and the mass
matrix of a rod element.

Now we turn to the element load vector fe. As before, we use the two indices ai
(a = 1,2; i = 1,2,3) for the entries of fe instead of the single index I (I = 1, ... ,6), where
1= 3(a-l) + i. It is easy to show that

(29)

where bij is the Kronecker delta. To obtain an explicit expression for f, we first interpolate
the pressure Pn(x) linearly inside the element between its two nodal values P~l and P~2' Then
we substitute the expression for M a in eqn (29) and use the definition (18) to finally get

a
a

fe = R 4 r 2p~1 +P;;2
6 a

a

(30)

We also consider the case where the pressure Pn(x) is proportional to the Dirac delta
with singularity at node B, i.e. Pn(x) = Pb(x - x B), where X B is the location of node B. This
representation allows us to consider forces which are concentrated in the x direction (see

SAS 32:13-1
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examples in Section 7). It is most convenient to account for these concentrated forces by
adding their contribution directly to the global load vector F [the right hand side of eqn
(24)]. Analogously to eqn (29), it is clear that F 4, = q (MA)(5i3, where A indicates a global
node number and M A denotes the global shape function associated with node A. Using eqn
(18) we obtain

(31 )

Thus, the quantity R 4 p must be added to the entry in the global force vector which
corresponds to degree-of-freedom 3 of node B (where the "concentrated load" acts).

5. CALCULATION OF STRESSES AND CURVATURES

The finite element system of equations (24) is considered for a desired finite number
of modes n = 0, ... ,N. For each mode n ~ I, two problems have to be solved: one for the
cosine Fourier coefficients and one for the sine coefficients. The mode n = 0 gives one
additional problem. Thus, we solve altogether 2N+ I problems of the form (24). In each
case we obtain the solution vector d,l' namely the nodal values ¢IIA, XIIA and l/J'14' for all
nodes A.

Now it is possible to calculate the stress resultants and curvatures at desired points of
the tube. We substitute eqn (7) into eqns (4) and (5) to obtain expressions for the stresses
and curvatures. For example, we obtain

IV ( n)2 [ ns nslN,(x, s) = - L' -- ¢~(x) cos - + ¢~(x) sin - ,
n~O R R R

(32)

and similar expressions for the other stress and curvature components. In eqn (32) we
omitted the superscript h for clarity, although all the quantities which appear throughout
this section are based on the finite element approximation. Now we can easily extract the
following expressions for the corresponding Fourier coefficients:

(N,)~, = -(n!R)2¢~(.y) , (NJ~ = - (n/ R)2 ¢~ (x) (33)

(Ns)~, = ¢~"(x), (N,):, = ¢:,"(X) (34)

(N,)~ = - (n! R)¢~' (x) , (N,):, = (n!R)¢~'(x) (35)

(KJ~ = l/J~"(X), (Kx ):, = l/J::'(x) (36)

(KJ~ = - (n! R)2l/J~,(X) , (K\.):, = - (n! R)2l/J~(X) (37)

(KJ~ = (n!R)l/J~'(x), (K,):, = - (n!R)l/J~' (x). (38)

As before, it is convenient to perform all the calculations on the element level. In
particular, we choose to calculate the stresses and curvatures at the mid-point of each
element. To this end, we denote the position x of the mid-point of element e by x~. We
substitute eqns (25) and (26) into eqns (33)-(38) [except eqn (36); see later], use the known
explicit expressions for the linear and Hermite cubic shape functions (Hughes, 1987) and
set x = x~. After some algebra we obtain



Incremental stresses in membrane tubes---Il 1935

(39)

I
(N~L == (NJ" I -- = --- (X;;2 - X~I),- '.. l"

(40)

(41)

(42)

(43)

Here ¢;;1' ¢;;2, X;; 1, X;;2' l/J;; 1and l/J;;2 are the nodal values at the two nodes of element e. In
eqns (39), (40) and (42) we have omitted the cosine and sine superscripts (c and s) since
the equations are identical for both. In eqns (41) and (43), IX is defined to be 1 if the quantity
on the left side is a cosine Fourier coefficient and - 1 if it is a sine coefficient. Also, the
asterisk after the brackets in eqns (41) and (43) indicates that the values which appear in
the brackets are those corresponding to the cosine solution if the quantity on the left side
is a sine Fourier coefficient and vice versa.

We have not yet given the expression for the Fourier coefficients of the axial curvature
K,. The reason is that in eqn (36) the second derivative ofthe function l/Jn appears. Now, since
l/Jn (x) is expanded via the shape functions M 1 [see eqn (23)], which are not continuously
differentiable. we cannot obtain the second derivative of l/J" by directly differentiating eqn
(23) or (26) twice. However. we may calculate K, from K, and N, by using eqn (25) of Libai
and Givoli (1994), which is the linearized normal equilibrium equation,

(44)

From eqn (44) we deduce

(45)

Here p;; is the value of p" at the mid-point of element e.
Thus, the Fourier components of the stress resultants and curvatures may easily be

obtained via eqns (39)-(43) and (45), based on the finite element solution of the cosine and
sine problems for each mode n. We note that while the finite element solution of the cosine
(sine) problem for mode n yields the cosine (sine) coefficients of No N" K, and K" it yields
the sine (cosine) coefficients of the shear stress N, and the twist K,. Of course, this should
be taken into account when superposing the different modal solutions, as described in the
next section.

6. THE NUMERICAL PROCEDURE AND COMPUTATIONAL ASPECTS

The numerical scheme described in the previous sections may be summarized by the
following algorithm:

I. Read input parameters.
2. Loop on harmonics: n = 0, ... , N.
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3. For all elements e: form the element stiffness matrix k~ using eqn (28), and
assemble it into the global stiffness matrix K",

4. Factorize K",
5. Loop: i = cos or sin.
6. Read Fourier coefficients of nodal concentrated loads, and insert them in the

global load vector Fn using eqn (31).
7. Read Fourier coefficients of distributed element loads, form the element load

vectors f,:' of all loaded elements using eqn (30), and assemble into F".
8. Solve K"d" = F".
9. Superpose the current modal solution d" to the total solution vector d.

10. Calculate the current mid-point modal stresses and curvatures using eqns (39)
(43) and (45).

II. Superpose the current modal stresses and curvatures to the total stress and cur-
vature solution arrays

12. Next i.
13. Next n.
14. Print the solution vector d and all the mid-point stresses and curvatures at desired

s locations.

We now make a few remarks regarding this scheme.
In step 3, if all the elements are of the same length then it is sufficient to form the

element stiffness matrix k~ once, since all the element matrices are identical in this case. In
steps 6 and 7 we have to read the Fourier coefficients of the given concentrated and
distributed loads. These coefficients are most conveniently calculated as a pre-process by
applying a Fast Fourier Transform (FFT) software to the given load function p. In step 8,
only forward reduction and back substitution have to be performed to obtain d", since the
matrix Kn has been factorized in step 4.

In step 9, the superposition of the modal solution to the total solution is performed by
employing the updating formula

d <- d+d" T (ns!R), (46)

where T(t) is either cos t or sin t, according to the "value" of i in step 5. Similarly, in step
11, the normal stresses and curvatures are superposed using an updating formula of the
form (46). The shear stress (N~L and the twist (K:)" are also superposed using such a
formula, but with a "reversed" T(t), i.e. T(t) = cos t if i = sin and T(t) = sin t if i = cos.
This procedure follows from eqns (41) and (43), where we recall that the asterisk indicates
the "reversal" of the trigonometric function.

In step 14, the final results are reported. These include all the nodal values of 0/,
0/' and if; , and all the elemental mid-point stress resultants and curvatures, at desired
circumferential locations. We recall that under the assumptions stated in Section 1, if; has
the physical meaning of the normal displacement.

To close this section, we discuss the appropriate choice for N, the number of harmonics
in the Fourier decomposition used in the s direction. N must be large enough so that two
Fourier representations are satisfactory: that of the given load and that of the unknown
solution. The solution is expected to be quite smooth even if the given load is discontinuous
or singular (Dirac delta). Thus, it is reasonable to assume that the number of harmonics N
used in the solution process is sufficient if the given load may be represented adequately by
a linear combination of the first N modes. This easily leads to a conservative estimate for
the appropriate value of N. A more efficient procedure is to check, during the solution
process, the contribution of each modal solution to the total solution, and to stop the
process if this contribution is smaller than a certain given tolerance G. Thus, from eqn (46)
we may derive the "convergence criterion",
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Fig. 2. Fourier series representation of two opposite concentrated forces with different numbers of
terms.

Idnl/lldll < 1:, (47)

where ildll is the Eulerian norm of the vector d. Note that d in inequality (47) should be the
updated d on the left hand side of eqn (46), to avoid division by zero in the very first step.

When the given load is a smoothly distributed load, usually the first few modes would
be sufficient to represent it. On the other hand, Fourier series representation is not so
efficient for very nonsmooth data or for data with a local nature. If the load has the
character of a step-function or of a Dirac delta (concentrated load), then many harmonics
may be needed for appropriate representation. Note, however, that the smoothness dis
cussed here pertains only to the behavior of the load in the s direction and not in the x
direction. In the axial direction, local features are resolved by the finite element discre
tization, provided that the finite element mesh is fine enough in regions where the solution
changes rapidly. See Fletcher ( 1984) for a comparison of spectral and finite element Galerkin
methods in this and other respects.

As an example, consider the case of two equal and opposite concentrated point loads
Q acting at the center of the tube (see example 4 in the next section). In this case the load
isp(x,8) = Qb(x-L!2)[b(8)+b(8-n)], where 15(8) is the 9irac delta and 8 = siR ranges
from ato 2n. From eqns (8) and (9), the truncated Fourier representation in the s direction
IS

[
I 2 .\

p(x, fI) '" Qb(x - L/2) ~ + ~ n ~ 2~ 6. cosn8J. (48)

Figure 2 shows the function in brackets for N = 10, IV = 20 and N = 100. In example 4 of
the ne.xt section, we used IV = 100, since further increase in N changed the numerical results
only slightly according to criterion (47).

7. EXAMPLE PROBLEMS AND "JUMERICAL SOLUTIONS

In this section we test the proposed solution procedure and present some numerical
results. Examples I and 2 are test problems whose exact solutions (under the theory
considered) are easily obtained. We compare these exact solutions to the solutions generated
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by the numerical scheme. Examples 3-7 further demonstrate the performance of the scheme.
In all the examples, the membrane material is chosen to be isotropic, with Young's modulus
E [see eqn (62) of Libai and Givoli (1994)].

Example 1: axisymmetric-parabolic load
Consider the following load, which is uniform in s and parabolic in x:

Eh 2
p(x,s) = --x (L-x)+ -L P~.

LR2
(49)

It is easy to verify that the exact solution to eqns (1), (2) and (6) with this given load is

Eh 3 7 3
c/J = -- x ( - x + 2L x- - L )

12LR"' .

x
!/J = - - (L-x).

L

(50)

(51)

Now we set L = I, R = 0.1, Eh = I, P~ = 10, P, = I, and we use 10 identical finite elements.
Due to the axisymmetry of the problem, the numerical solution remains the same regardless
of N; only the n = 0 modal solution makes a nonzero contribution to the total solution
vector d. Note also that in the axisymmetric case the numerical solution (as well as the
exact solution) does not depend on the initial pressure P,. This follows from eqn (28), where
Ps appears only in the coefficient of the fifth matrix, multiplied by n2

. [That the exact
solution does not depend on P, in the axisymmetric case can be deduced directly from eqns
(I) and (2).]

We compare the exact solution for !/J, N s and K~ to the numerical results. The relative
errors in these three variables at the center of the tube (x = L/2) are 0.005%, I % and 1%,
respectively. The maximal relative errors in these variables are 0.005%, 5% and 5%,
respectively. Thus, the error in !/J is extremely small, and the error in N s and K~ is reasonably
small for the given crude mesh. This difference between the accuracy of the primary variables
(c/J, Xand!/J) and the accuracy of the "second-derivative" variables (stresses and curvatures)
is of course expected. Refining the finite element mesh leads to further reduction in these
errors. This example demonstrates that the accuracy of the numerical scheme is satisfactory
for "smooth" axisymmetric loading.

Example 2 : axisymmetric ring load
We consider an axisymmetric ring shear force, acting at the center of the tube, x = L/2.

Thus, p = Qb(x-L/2). We set Q = I, L = 100, R = 1, Eh = I, P, = L and we use 100
identical finite elements. We solve the problem numerically with four different values of the
longitudinal initial force: P, = 100, 10, 1 and 0.1. Figure 3 shows the hoop stress N, along
the tube for these values of P~. As expected, the distribution of the hoop stress becomes
more local and its peak becomes higher as the initial axial tension in the tube is decreased.
For P, = 10, we have compared the numerical solution to the exact solution of this problem,
and again obtained a very good agreement between the two. In Fig. 3 and in all the other
graphs that follow, the results for the stresses and curvatures are linearly interpolated
between the element mid-points.

For P~ = O. I, the solution shown in Fig. 3 exhibits an "overshoot" on both sides of
the loaded point. This is a numerical artifact, which can be explained by noting that for
small values of P, the problem (I), (2) and (6) becomes a singular perturbation problem.
Overshoot, spurious oscillations and "locking" are well known numerical effects associated
with the finite element solution of such problems [see e.g. Hughes (1987), Babuska and
Szymczak (1982), Stolarsky and Belytschko (1983) and Givoli (1988)]. Various ways to
overcome these undesired effects have been proposed [see e.g. Hughes (1987)]. However, it
must be noted that the tube theory under consideration ceases to be applicable when P~
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Fig. 3. The axisymmetric ring load problem: the hoop stress N, along the tube for different values
of P,.

becomes small compared with Q, since in this case the problem becomes strongly nonlinear,
and linearization about the reference homogeneous state may not be justified. Thus, the
exact solution of eqns (I), (2) and (6), not only the numerical solution, becomes physically
meaningless when P, becomes small.

Example 3 : a cos 20 load along an axial segment
We consider a tube of length L = 100, whose central segment 40 :( x :( 60 is loaded

by the pressure p = cos 20 (where 8 = sjR). The parameters are the same as in the previous
example. Here, only the cosine part of the mode n = 2 contributes to the solution. Figure
4 shows the normal displacement lj; along the axial line 8 = 0 for four values of p\. As P,
becomes smaller, the displacement pattern is localized and approaches the shape of a
"rectangular step", which is also the pattern of the load in the x direction. Again, the
numerical solution corresponding to P, = 0.1 exhibits spurious overshoot.

Example 4: pinched tube
We consider two equal and opposite concentrated point loads Q = 1 pinching the tube

at its central cross-section x = L/2, at the circumferential positions 8 = 0 and e = n. This
case is discussed at the end of Section 6, and the Fourier decomposition of p in this case is
given by eqn (48). The parameters are the same as in example 2. We use N = 100 harmonics
in the s direction. We obtain the numerical results for different values of P" as before.

Figures 5-8 summarize the results. Figure 5 shows the normal displacement lj; along
the perimeter of the central cross-section x = Lj2. Figure 6 shows the normal stress com
ponents N, and N" and Fig. 7 shows the shear stress IN,I along this perimeter. In Fig. 8,
the normal curvature K, is shown along the axial line 8 = O. The curvature K, behaves
similarly. The twist I Kfl is extremely small throughout the tube, for all values of P,
considered.

Example 5: beam-like loading
We consider a membrane tube of length L = 100 loaded with the "beam-like load"

illustrated in Fig. 9. The load function p (x, 0) may be written as p = 6(O-n)S (x) +
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lOc5(x-30)c5(e) + I0c5(x-70)c5(e), where Sex) is defined as having the value 1 if 40::(
x ::( 60 and 0 otherwise. The parameters are the same as in example 2, and we use
N = 100 harmonics. In this example we also set P, = 10.

Figures 10 and 11 show the stress components N, and N" respectively, along the axial
lines e= e, for the angular values e= 0, 90 and 1800

• Whereas the distribution of N x along



Incremental stresses in membrane tubes-II 1941

d-r----------------------------------,

Px=1, Ns
Px=10, Ns
Px=1, Nx

Px=10, Nx

............................................ , " ..

120.010.00.0

: .~~ t/' .

............. .
a '<--'-'-:'" L~:'-''-.::.-- ...- ~ .......... -o .. ' . ,__.~ . .. .__._._.---:~

~ ="'........ .. --
.+-------,-...:..:.:..:..::.:.:.-......-----,------r--..:..:..:;,;.;..--r------1

110.0 240.0 300.0 3eO.0
Atwje

Fig. 6. The pinched tube problem: the normal stress components N, and N, along the central
perimeter of the tube.
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the tube differs significantly from one axial line to another, the hoop stress Ns is seen to
depend very weakly on e; the various graphs differ only near the two points of application
of the concentrated forces.

Example 6: oualization of the boundary
In all the previous examples, the perturbation of the homogeneous reference state was

in the form of normal loading. In this and the following example we perturb the deformation
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Fig. 9. Set-up of the beam-like loading problem.

or the stress at the boundary, and we investigate the rate in which this disturbance decays
(if at all) away from this boundary into the interior of the tube. The theoretical treatment
of such decay is discussed in Appendix A.

Now we perturb the shape ofthe boundary at the edge x = O. To this end, we replace the
boundary condition t/J = 0 which was used up till now [see egn (6)] by the inhomogeneous
condition t/J = 0.01 cos (2s/R) at the edge x = O. This amounts to the ovalization of the
circular boundary. Note that although in previous sections we considered only homo
geneous boundary conditions for simplicity, the extension to inhomogeneous conditions is
easy and quite obvious.

We set L = 1, R = 0.1, Eh = 6.9 x 107
, P, = 1.6 x 10\ and we use 100 identical finite

elements. Figure 12 shows the normal displacement t/J = IV along the axial line () = 0 for
different values of Ps . We see that for Ps = 0, IV varies linearly with x. This is exactly the
result obtained by linear membrane theory. However, when P,. is increased, the solution is
seen to decay away from the edge.
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Fig. 10. The beam-like loading prob[em: the stress N, along differenl axial lines.
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Fig. II. The beam-like loading problem: the stress N, along dif1'ercnt axial lines.

Example 7 : nonuniform boundary tension
In this final example, we perturb the state of stress at the boundary x = °by applying

to the boundary an incremental tensile stress N, which is in self-equilibrium. This defines a
St. Venant type problem. The prescribed tension is of the form N\(O, s) = cos (ksj R).
where k ): 2 is an integer. This boundary condition is imposed in practice by prescribing
!/J(O, s) = - (R/k)2 cos (ks! R), where we make use of the relation N \ = (P." [see eqn (4)]. We
use the same parameters as in example 6.
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Fig. 13. Thc boundary tension problem. with NJO, s) = cos (ksj R) prescribed: the stress N, along

the axial line () = 0 for different values of k.

Figure 13 shows the stress lV, along the axial line e= 0 for different values of k, with
P, = 2.8 x 107 It is clear that the decay of lV, from the boundary of the tube is faster for
larger values of k. namely for boundary loads which are more rapidly varying. This result
is explained by the self-cancellation effect which is present when the boundary load is highly
oscillatory.

Now we fix k = 2 and we change the value of P,. Figure 14 shows N, along the axial
line f) = 0 for different values of P", As in the previous example, the result obtained for
P, = 0 is the same as that predicted by linear membrane theory, and as P, is increased, the
decay of the solution away from the edge becomes more prominent.

. We define the "decay distance" to be the distance from the boundary along the axial
line e= 0, where lV, reaches a value of 5% from the boundary value N x = I. Figure 15
shows the decay distance as a function of log (P, + 1), according to this definition. We see
that up to about P, = 103 no decay is exhibited at alL Beyond Ps = 103

, the decay distance
decreases rapidly with increasing loads P" For loads bigger than about P, = 106

, the decay
distance does not decrease any further.

It is seen that the "decay distance" depends on the type of preloading and type of
disturbance. For example, in the problem involving an axisymmetric ring load (example
2), the decay distance increases with the increase in preloading P, (Fig. 3), whereas in
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Fig. 15. The boundary tension problem: the "decay distance" as a function of the initial pressure
P,.

problems involving nonuniform edge disturbances (examples 6 and 7), the decay distance
decreases with the increase in preloading P, (Figs 12 and 14). A more general analysis of
the decay problem is presented in Appendix A. As explained there, both types of behavior
can occur, and the proper mixture may depend on the problem at hand.

8 CONCLUDING REMARKS

In this paper we have proposed a numerical scheme for the solution of problems of
membrane tubes, which are formulated under the incremental theory developed in the first
part of this series (Libai and Givoli, 1994). We have demonstrated the performance of the
scheme by applying it to several model problems. The proposed numerical method is based
on finite element discretization in the axial (x) direction, and discrete Fourier decomposition
in the circumferential (s or 8) direction. The modal decomposition leads to a nonstandard
finite element formulation which requires the construction of special finite elements.

One may raise the question whether it may be better to use finite element discretization
throughout the domain, namely in both x and s, or maybe to apply Fourier decomposition
throughout the domain. Both options are possible. The former case is discussed in Sections
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9 and 10 of Libai and Givoli (1994) ; the simplest conforming finite element would have 20
degrees of freedom and the whole procedure would entail large computational effort. This
is, however, unavoidable if the tube contains slits or holes. On the other hand, the use of
Fourier decomposition in both x and s would typically require an extremely large number
of harmonics to resolve the local features of p(x, s) in both x and s.

Thus, it seems that Cor membrane tubes which do not contain holes or slits, the
combined use of finite elements and Fourier decomposition leads to a well-balanced scheme,
as far as accuracy and computational efficiency are concerned. The advantages of using
combined finite element and spectral discretization for the solution of problems in solid
mechanics have also been observed in previous works [see e.g. Rand and Givoli (1992),
Givoli and Rand (1993), Wunderlich et al. (1985), Danielson and Tielking (1993) and
Kaiser et al. (1993 )].
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APPE1\DIX A DECAY OF DISTURBANCES FROM THE EDGE

Nonuniform input in the form of self-equilibrated forces or geometrical disturbances applied Lo the edge of
a loaded cylindrical mcmhrane should attenuate as the distance from the edge increases. This is in contrast with
the linear case (P, = P, = 0). whcre attenuation might not occur. Examples include the decay of longitudinal self
equilibrated stresses (SI. Venant problem). cdge ovalization [which, as shown in Libai (1972), can be used for the
analysis of oval membranes by perturbation from the circular form], edge rotations, and so forth. See examples 6
and 7 in Section 7.

To analyse this problem, we consider the homogeneous form of eqns (1) and (2). It is possible to eliminate
IjJ and to obtain a single sixth-ordcr equation in <p, namely
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(AI)

This is the homogeneous counterpart of eqn (61) of Libai and Givoli (1994). Now we seek a solution of (A I) in
the form:

¢ = Cexp(-i.xjR) cos (ksjR), (A2)

where k is the circumferential wave number of the disturbance and A is the exponential axial decay coefficient.
The resulting characteristic equation for A is:

(A3)

Defining 13, = fU(Eh), 13, = [3,/(Eh), p = pj(Eh), ex = k'P,/(Eh), c., = k'P,.j(Eh), /1 = (Ajk)' (where Eis a reference
elastic modulus), the characteristic equation reduces to

(A4)

which is a cubic equation in /1 as a function of [co [" and the orthotropic elastic parameters C{J" p" p). A general
solution of the cubic equation is available, from which six values of ;, can be obtained. Only these with positive
real parts are needed.

Specific cases can easily be studied by analytical or numerical means. In the isotropic case,13x = 13., = ~P = I,
and the characteristic equation becomes:

(AS)

Special cases are:

(a) For [x = [, = f. the equation is e(fl - I )' = fl'.
(b) For [, = 0 the equation is [,(/1-1)' = /1, or fl = O.
(c) For [x = 0 the equation is [,.(/1-1)' = -/1'.
(d) Fon, = 1]1'., the equation is 1'..,{tI-I)'(/1-I]) = /1'.

The last case can be used for a parametric study, with I] as a parameter. The case I] = 1/2 is that of a closed
pressurized tube.

The equation is somewhat similar to that obtained for the bending and buckling of cylindrical shells (without
the bending term and with different signs), so that fast and slow attenuations are expected to occur (Calladine,
1983).

In the axisymmetric case, the above does not hold, and we must go back to the original equations (23)-(30)
of Libai and Givoli (1994). Equation (24) reduces to an identity. From eqns (26)-(28) we find Kx = !/t.w
K, = -!/tjR', B, = -!/tiR. Equation (23) yields N, = No+P,e,-P,B" where No is a constant, to be determined
from the end conditions. The constitutive relations (29) and (30) yield N, = K,e,+ K,No, where

1+c,P,+c"P,.
K, =

,\+(c,c,-c~.. )P,

e\.I"

K, = .
- c,+(c,c,-c~,)P,

(A6)

Finally, the equilibrium equation (25) of Libai and Givoli (1994) reduces to

Substituting!/t = C exp ( - i.xjR) into the homogeneous part of (A7), we obtain the characteristic equation,

(A7)

(A8)

If the initial stresses are small compared with Eh, then K, '" liC,. In this case, for a given PO' A is proportional to
p;"2.


